Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Biomol Struct Dyn ; : 1-28, 2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-2258161

ABSTRACT

The global prevalence of COVID-19 disease and the overwhelming increase in death toll urge scientists to discover new effective drugs. Although the drug discovery process is a challenging and time-consuming, fortunately, the plant kingdom was found to have many active therapeutics possessing broad-spectrum antiviral activity including those candidates active against severe acute respiratory syndrome coronaviruses (SARS-CoV). Herein, nine traditional Chinese medicinal plant constituents from different origins (Glycyrrhizin 1, Lycorine 2, Puerarin 3, Daidzein 4, Daidzin 5, Salvianolic acid B 6, Dihydrotanshinone I 7, Tanshinone I 8, Tanshinone IIa 9) previously reported to exhibit antiviral activity against SARS-CoV were virtually screened in silico (molecular docking) as potential inhibitors of SARS-CoV-2 target proteins. The tested medicinal plant compounds were in silico screened for their activity against two key SARS-CoV-2 target proteins; 3CLpro, and Spike binding-domain proteins. Among the tested medicinal plant compounds, Salvianolic acid B 6 (Sal-B) showed promising binding affinities against the two specified SARS-CoV-2 target proteins compared to the reference standards used. Hence molecular dynamics simulations followed by calculating the free-binding energy were carried out for Sal-B providing information on its affinity, stability, and thermodynamic behavior within the two SARS-CoV-2 target proteins as well as key ligand-protein binding aspects. Besides, the quantum mechanical calculations showed that Sal-B can adopt different conformations due to the existence of various rotatable bonds. Therefore, the enhanced antiviral activity of Sal-B among other studied compounds can be also attributed to the structural flexibility of Sal-B. Our study gives an explanation of the structure activity relationship required for targeting SARS-CoV-2 3CLpro and Spike proteins and also facilitates the future design and synthesis of new potential drugs exhibiting better affinity and specificity. Besides, an ADME study was carried out on screened compounds and reference controls revealing their pharmacokinetics properties.Communicated by Ramaswamy H. Sarma.

2.
Int Urol Nephrol ; 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2238452

ABSTRACT

PURPOSE: COVID-19 frequently affects the kidneys with symptoms ranging from mild proteinuria to progressive acute kidney injury. This prospective study aimed to assess the short- and long-term impact of asymptomatic and mild COVID-19 on the renal function of healthy young adults, and to determine the correlation between viral load and kidney function among these patients. METHODS: This was a prospective cohort study conducted over a period of 6 months. Patients were followed-up at baseline, and then after 3 and 6 months, respectively. Real-time PCR cycle threshold (CT) was used to determine the viral load and disease activity. Patients were classified into two groups with either asymptomatic COVID-19 or mild pneumonia. The assessment parameters were variables that could directly or indirectly relate to the renal function. RESULTS: A total of 48 patients were included and evaluated. The majority of patients (62.5%) had asymptomatic COVID-19 disease. Patients with mild pneumonia had significantly higher serum creatinine (SCr) at the time of COVID-19 diagnosis (beta = 12.836, 95% CI = 2.405-23.268, P = 0.019), after 3 months (beta = 14.345, 95% CI = 1.149-27.542, P = 0.035), and after 6 months (beta = 14.100, 95% CI = 0.730-27.470, P = 0.040) compared to asymptomatic patients. Mild pneumonia was also significantly associated with lower serum albumin level at the time of COVID-19 diagnosis (beta = - 6.317, 95% CI = - 9.448-- 3.185, P < 0.001). CONCLUSION: Mild COVID-19 is associated with mild renal involvement without AKI. Changes in the renal function appear to be related to reduced creatinine clearance and possible albumin leakage in the acute phase of the disease. The reduction in creatinine clearance is not predicted by viral load, and it appears to be a long-term effect of the disease that can last for at least 6 months.

3.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2071505

ABSTRACT

In this article, 34 anticoagulant drugs were screened in silico against the main protease (Mpro) of SARS-CoV-2 using molecular docking tools. Idraparinux, fondaparinux, eptifibatide, heparin, and ticagrelor demonstrated the highest binding affinities towards SARS-CoV-2 Mpro. A molecular dynamics study at 200 ns was also carried out for the most promising anticoagulants to provide insights into the dynamic and thermodynamic properties of promising compounds. Moreover, a quantum mechanical study was also conducted which helped us to attest to some of the molecular docking and dynamics findings. A biological evaluation (in vitro) of the most promising compounds was also performed by carrying out the MTT cytotoxicity assay and the crystal violet assay in order to assess inhibitory concentration 50 (IC50). It is worth noting that ticagrelor displayed the highest intrinsic potential for the inhibition of SARS-CoV-2 with an IC50 value of 5.60 µM and a safety index of 25.33. In addition, fondaparinux sodium and dabigatran showed promising inhibitory activities with IC50 values of 8.60 and 9.40 µM, respectively, and demonstrated safety indexes of 17.60 and 15.10, respectively. Moreover, the inhibitory potential of the SARS-CoV-2 Mpro enzyme was investigated by utilizing the SARS-CoV-2 Mpro assay and using tipranavir as a reference standard. Interestingly, promising SARS-CoV-2 Mpro inhibitory potential was attained for fondaparinux sodium with an IC50 value of 2.36 µM, surpassing the reference tipranavir (IC50 = 7.38 µM) by more than three-fold. Furthermore, highly eligible SARS-CoV-2 Mpro inhibitory potential was attained for dabigatran with an IC50 value of 10.59 µM. Finally, an SAR was discussed, counting on the findings of both in vitro and in silico approaches.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Molecular Docking Simulation , Coronavirus 3C Proteases , Molecular Dynamics Simulation , Fondaparinux , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Dabigatran , Ticagrelor , Eptifibatide , Gentian Violet , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism , Heparin/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
4.
RSC advances ; 11(17):10027-10042, 2021.
Article in English | EuropePMC | ID: covidwho-1787159

ABSTRACT

The global breakout of COVID-19 and raised death toll has prompted scientists to develop novel drugs capable of inhibiting SARS-CoV-2. Conducting studies on repurposing some FDA-approved glucocorticoids can be a promising prospective for finding a treatment for COVID-19. In addition, the use of anti-inflammatory drugs, such as glucocorticoids, is a pivotal step in the treatment of critical cases of COVID-19, as they can provoke an inflammatory cytokine storm, damaging lungs. In this study, 22 FDA-approved glucocorticoids were identified through in silico (molecular docking) studies as the potential inhibitors of COVID-19's main protease. From tested compounds, ciclesonide 11, dexamethasone 2, betamethasone 1, hydrocortisone 4, fludrocortisone 3, and triamcinolone 8 are suggested as the most potent glucocorticoids active against COVID-19's main protease. Moreover, molecular dynamics simulations followed by the calculations of the binding free energy using MM-GBSA were carried out for the aforementioned promising candidate-screened glucocorticoids. In addition, quantum chemical calculations revealed two electron-rich sites on ciclesonide where binding interactions with the main protease and cleavage of the prodrug to the active metabolite take place. Our results have ramifications for conducting preclinical and clinical studies on promising glucocorticoids to hasten the development of effective therapeutics against COVID-19. Another advantage is that some glucocorticoids can be prioritized over others for the treatment of inflammation accompanying COVID-19. The global breakout of COVID-19 and raised death toll has prompted scientists to develop novel drugs capable of inhibiting SARS-CoV-2.

5.
Molecules ; 26(12)2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1282542

ABSTRACT

The discovery of drugs capable of inhibiting SARS-CoV-2 is a priority for human beings due to the severity of the global health pandemic caused by COVID-19. To this end, repurposing of FDA-approved drugs such as NSAIDs against COVID-19 can provide therapeutic alternatives that could be utilized as an effective safe treatment for COVID-19. The anti-inflammatory activity of NSAIDs is also advantageous in the treatment of COVID-19, as it was found that SARS-CoV-2 is responsible for provoking inflammatory cytokine storms resulting in lung damage. In this study, 40 FDA-approved NSAIDs were evaluated through molecular docking against the main protease of SARS-CoV-2. Among the tested compounds, sulfinpyrazone 2, indomethacin 3, and auranofin 4 were proposed as potential antagonists of COVID-19 main protease. Molecular dynamics simulations were also carried out for the most promising members of the screened NSAID candidates (2, 3, and 4) to unravel the dynamic properties of NSAIDs at the target receptor. The conducted quantum mechanical study revealed that the hybrid functional B3PW91 provides a good description of the spatial parameters of auranofin 4. Interestingly, a promising structure-activity relationship (SAR) was concluded from our study that could help in the future design of potential SARS-CoV-2 main protease inhibitors with expected anti-inflammatory effects as well. NSAIDs may be used by medicinal chemists as lead compounds for the development of potent SARS-CoV-2 (Mpro) inhibitors. In addition, some NSAIDs can be selectively designated for treatment of inflammation resulting from COVID-19.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning/methods , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Auranofin/chemistry , Auranofin/pharmacology , Binding Sites , COVID-19/complications , Computational Biology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Databases, Chemical , Humans , Indomethacin/chemistry , Indomethacin/pharmacology , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Structure-Activity Relationship , Sulfinpyrazone/chemistry , Sulfinpyrazone/pharmacology , United States , United States Food and Drug Administration
6.
RSC Adv ; 11(17): 10027-10042, 2021 Mar 05.
Article in English | MEDLINE | ID: covidwho-1152890

ABSTRACT

The global breakout of COVID-19 and raised death toll has prompted scientists to develop novel drugs capable of inhibiting SARS-CoV-2. Conducting studies on repurposing some FDA-approved glucocorticoids can be a promising prospective for finding a treatment for COVID-19. In addition, the use of anti-inflammatory drugs, such as glucocorticoids, is a pivotal step in the treatment of critical cases of COVID-19, as they can provoke an inflammatory cytokine storm, damaging lungs. In this study, 22 FDA-approved glucocorticoids were identified through in silico (molecular docking) studies as the potential inhibitors of COVID-19's main protease. From tested compounds, ciclesonide 11, dexamethasone 2, betamethasone 1, hydrocortisone 4, fludrocortisone 3, and triamcinolone 8 are suggested as the most potent glucocorticoids active against COVID-19's main protease. Moreover, molecular dynamics simulations followed by the calculations of the binding free energy using MM-GBSA were carried out for the aforementioned promising candidate-screened glucocorticoids. In addition, quantum chemical calculations revealed two electron-rich sites on ciclesonide where binding interactions with the main protease and cleavage of the prodrug to the active metabolite take place. Our results have ramifications for conducting preclinical and clinical studies on promising glucocorticoids to hasten the development of effective therapeutics against COVID-19. Another advantage is that some glucocorticoids can be prioritized over others for the treatment of inflammation accompanying COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL